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polarization in the incident beam. For this purpose 
we have shown that the intensity profile within the 
multiple-reflection peak for a centrosymmetric crystal 
such as germanium can be used. Third, N-beam 
diffraction can produce circularly or elliptically polar- 
ized X-rays from a linear incident polarization and 
therefore can be used as an X-ray phase plate. With 
greater availability of synchrotron-radiation sources 
worldwide, it is our belief that the technique of multi- 
ple-beam diffraction will find more use, both in X-ray 
physics and crystallography and in synchrotron-radi- 
ation instrumentation. 

The author is grateful to K. D. Finkelstein and 
B. W. Batterman for many stimulating discussions. 
This work is supported by the United States National 
Science Foundation, through CHESS, under Grant 
No. DMR 90-21700. 
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Abstract 

Planar bibridged CunX2nL2 oligomers, where X is a 
halide ion and L a halide ion or neutral ligand, with 
values of n ranging from 1 to 7, occur in numerous 
copper(II) halides. Within the oligomers, each Cu n 
ion assumes an approximate square-planar primary 
coordination geometry. Common examples include 
Cu2,,~6 2- , Cu3X8 2- and CuaX2o anions and neutral 
species such as [CuC12(H20)2], [Cu2Br4(pyridine)2] 
and [Cu3CI6(CH3CN)2  ]. The oligomers aggregate 
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through the formation of long semicoordinate Cu-X 
linkages, creating stacks of oligomers. A wide variety 
of stacking arrangements (polytypes) is possible, 
corresponding to different sequences of relative trans- 
lations between adjacent oligomers. The ground states 
of a one-dimensional Hamiltonian are developed to 
account for a subset of the observed polytypism. 
Terms included in the Hamiltonian include quadratic 
(S,'Sj) nearest- and next-nearest-neighbor inter- 
actions, nearest-neighbor biquadratic [(Si" Sj) 2] 
interactions and nearest-neighbor XY-interaction 
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614 PLANAR COPPER(II) HALIDE OLIGOMERS 

(S~:,Sjy + SiySj~) terms. The X Y  term accounts for the 
four allowable relative translations, the nearest- 
neighbor terms parameterize the energies of these four 
relative translations and the next-nearest-neighbor 
term gives rise to the development of the stacking 
patterns. The model predicts the existence of five of 
the observed polytypes and, in addition, eight new 
polytypes. 

Introduction 

Stacking polytypism in inorganic materials has been 
the subject of considerable study, both experimental 
and theoretical (Komura & Kitano, 1977; Loiseau, 
Van Tendeloo, Portier & Ducastelle, 1985; Yeomans 
& Price, 1986). ABX3 compounds, for example, form 
chains of face- and corner-shared octahedra, depend- 
ing on whether hexagonal or cubic stacking of close- 
packed AX3 layers occurs (Wells, 1947a; Fernandez, 
Tello & Arreandiaga, 1978; Rao & Rao, 1978). These 
ABX3 systems may be modeled phenomenologically 
by a pseudospin model (Bak & Bruinsma, 1982, 1983), 
the axial next-nearest-neighbor Ising (ANNNI) 
model, where a 'spin-up' configuration corresponds 
to hexagonal stacking and 'spin down' corresponds 
to cubic stacking (Plumer, Hood & Caille, 1988). The 
ground states of this model correspond to one of the 
following 'magnetic' states: ferrogmagnetic 

1 (1'1'1'1'...); antiferromagnetic ( ] '$] '$ . . . ) ;  or the 
state (~"1'$$ • • • ), where adjacent pairs of spins have 
opposite orientations. At higher temperatures, an 
infinite series of m/n states (a 'devil's staircase') is 
found (Bak & von Boehm, 1979, 1980), where 2m 
changes of spin states occur every n spins, as well as 
the existence of regions of incommensuration. 
Different models, such as the three-state Potts model 
(Bruinsma & Zingwill, 1985), have been used to 
describe other types of systems. 

We have recently summarized the large variety of 
stacking patterns observed in planar Cu.X~+2 and 
related oligomers ( X = C I - ,  Br- or other ligand) 
(Geiser, Willett, Lindbeck & Emerson, 1986; Bond & 
Willett, 1989; Manfredini, Pellacani, Bonamartini- 
Corradi, Battaglia, Guarini, Guisti, Willett, Pon & 
West, 1990). The Cu 2+ ion has a d 9 configuration and 
thus is subject to a Jahn-Teller distortion. For octa- 
hedral-type coordination, this leads to elongation of 
the octahedron along one of the coordinate axes, 
resulting in four short coplanar Cu-X bonds and two 
longer (so-called 'semicoordinate') Cu...X out-of- 
plane interactions. This defines a square-bipyramidal 
local geometry. It is thus convenient to consider a 
planar CuX4 grouping as the fundamental species. 
The planar Cu,X2,+2 oligomers are then formed by 
edge sharing between two or more planar CuX4 
groups. In the systems of interest, the oligomers stack 
in a coplanar fashion such that one of the X ligands 

in an oligomer forms a semicoordinate Cu...X 
interaction with a neighboring oligomer, as shown in 
Fig. 1 for n = 1. This corresponds to the sharing of 
one of the four edges of the upper (or lower) half of 
the square bipyramid. In this manner, a ferrodistor- 
tive arrangement of the Jahn-Teller elongated semi- 
coordinate Cu...X interactions is formed. For con- 
venience, this edge-sharing arrangement of the square 
bipyramids is shown schematically in Fig. 1 (b) as the 
overlaying of 'envelopes' representing the oligomer. 
In this representation, the edge sharing between 
oligomers can be represented by one of four transla- 
tion vectors, labeled tl, t2, t3 and t 4 in Fig. 1, along 
the +x, +y, - x  and - y  directions, respectively. There 
is thus a fourfold degeneracy associated with this 
stacking process. 

The stacking polytypism arises from the repetitive 
sequences assumed by these four degenerate transla- 
tional processes. The simple four-unit repeat sequen- 
ces that can occur are shown in Fig. 2. In each case, 

l 

t4 t l  

(a) (c) 

Fig. 1. (a) Stacking of square-planar CuX4 species to form semi- 
coordinate C u . . . X  bonds (dashed lines) and square 
bipyramidal coordination polyhedra. (b) Stacking diagram for 
two CuX4 oligomers. (c) Orientation of coordinate system and 
translation vectors. 

(a) (b) 

(c) (d) 

Fig. 2. Four possible stacking patterns. (a) Linear 1, 1, 1, 1 pattern; 
(b) horizontal zigzag 1, 2, 1, 2 pattern; (c) vertical zigzag 1, 4, 1, 4 
pattern; (d) alternating 1, 3, 1, 3 pattern. 
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the initial translation is taken to be in the positive x 
direction. Successive translations correspond to rota- 
tions of the translation vectors by 0, +90 or 180 °. A 
phenomenological approach to model the interac- 
tions in these systems must take into account the 
fourfold degeneracy of the translations. Thus, an 
appropriate model for this problem is the one- 
dimensional X Y  model with cubic anisotropy. In this 
model, the pseudospins are constrained by the 
anisotropy to point toward the corners of square. 

In this paper, we present the application of this 
model to the calculation of the ground-state energies 
for the stacking polytypism in planar Cu,X~+2 
oligomers. The next section gives a more detailed 
summary of the polytypism observed, the third section 
develops the model and presents the results of the 
ground-state energy calculations, while the final sec- 
tion compares theory and experiment. 

Observed stacking patterns 

The series of CunX2n+2-type oligomers shows a sur- 
prising array of structural variations. The values of 
n range from 1 to 7, defining monomeric (Brown, 
Donner, Hall, Wilson, Wilson, Hodgson & Hatfield, 
1979), dimeric (Colombo, Menabue, Motori, 
Pellacani, Porzio, Sandrolini & Willett, 1985), 
trimeric (Grigereit, Ramakrishna, Place, Willett, Pel- 
lacani, Manfredini, Menabue, Bonamartini-Corradi 
& Battaglia, 1987) etc., up to heptameric (Bond, 1990) 
units. In addition to the oligomers containing solely 
halide ions as ligands, one or two of these halides 
may be replaced by other ligands, such as H20, NH3, 
CH3CN, pyridine or more complex organic ligands. 
This is demonstrated in Fig. 3 for several of the known 
dimeric species (Manfredini et al., 1990; Willett, 
Dwiggens, Kruh & Rundle, 1963; Swank & Willett, 
1980; Willett, Bond & P o n ,  1990). Ligands that 
coordinate at one site (Manfredini et al., 1990), as 
illustrated in Fig. 3(b), generally replace terminal 
halide ions, with the second substitution occurring in 
the t rans  position (Swank & Willett, 1980) (Fig. 3c). 
In contrast, bidentate ligands (Fig. 3d), which replace 
two halide ions, cap one end of an oligomer 
(Willett et  al., 1990). The bulk of these ligands 
and their ability to form the semicoordinate bonds 
(or lack thereof) will play an important role in the 
energetics of the various stacking patterns. Detailed 
discussions of these effects will be given in the final 
section of this paper. 

Formation of semicoordinate bonds between 
oligomers leads to numerous stacking arrangements. 
Two possible ways of stacking adjacent oligomers are 
shown in Figs. 4(a) and (b) for n = 3. In Fig. 4(a), 
the terminal halide forms a semicoordinate bond with 
the first Cu atom in the adjacent oligomer (Grigereit 
et  al., 1987). We will refer to this as a one-site transla- 

tion. Each Cu atom within a given trimer attains a 
square-bipyramidal coordination geometry through 
this stacking process. In the arrangement shown in 
Fig. 4(b), the terminal halide now forms a semicoor- 
dinate bond with the second Cu atom in the adjacent 
oligomer, thus defining a two-site translation. For 
larger oligomers, three-site and four-site translations 
are also observed. The two-site translation leaves the 
first (and last) Cu atom in the oligomer with only a 
square-pyramidal geometry. Since this is energetically 
unfavorable, the stacks may interdigitate so that a 
square bipyramidal coordination is attained for each 
Cu atom, as shown in Fig. 4(c) (Willett & Rundle, 
1964). In other instances, an extraneous ligand or a 
cation will occupy the unfilled coordination site 
(Swank & Willett, 1974; Bond & Willett, 1992). Rep- 
resentative stacking patterns for the n -> 2 oligomers 
are shown in Figs. 5 and 6. 

Only the one-site translation stacking patterns (Fig. 
5) (Geiser et al., 1986; Bond & Willett, 1989; 
Manfredini et  al., 1990) will be considered in this 
paper. The most common stacking pattern observed 
is the 1, 1, 1, 1 repeat sequence, found for n = 1, 2, 
3 and 4, as well as n = ~ [in the parent CuCI2 and 
CuBr2 compounds (Wells, 1947b; Helmholz, 1947)]. 
The alternating 1, 2, 1, 2 sequence is observed for 
n = 1, 2, and 3, while the closely related 1, 4, 1, 4 
sequence is found for n = 1 and 2 (the n = 1 patterns 
are degenerate for these two sequences in the absence 
of any perturbation favoring a specific direction of 
propagation). For n = 1 and 3, the 1, 3, 1, 3 repeat 
sequence occurs, while for n = 3, the 1, 1, 2, 2 pattern 
is found. The 1, 2, 1, 2 and 1, 1, 2, 2 patterns show 
an obvious analogy with the 1'~1'$ • • • and 1'1'$$ " " " 
ground states found for the A N N N I  model. This has 

cJ .ct cF 2 H:O\ / C , \  /cJ "1 
\ / - - \ c a  / e6 

(a) (b) 

(c) 

Fig. 3. n = 2 oligomers. (a) The Cu2Cl 2- oligomer in KCuCI3. (b) 
The monosubstituted Cu2C15(H20)- oligomer in (1,2-dimethyl- 
pyridinium)Cu2Cls(H20). (c) The trans disubstituted oligomer in 
CuBr2(pyridine). (d) The cis oligomer in Cu2Cla(4,4'-dimethyl- 
2,2'-dipyridine). 
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prompted our interest in developing a phenomeno- 
logical model to describe the more complex examples 
of polytypism observed in these oligomeric systems, 
at least for the subset of patterns depicted in Fig. 5. 

Fig. 6 shows additional stacking sequences that 
clearly demonstrate the complexity of the polytypism 
present in the CUnX2n+2 oligomeric systems. These 
include rotation by ±90 ° of the Cu-Cu direction 
within the oligomer (Fig. 6b) (Willett, 1966), different 
extents of relative translation of successive oligomers 
(different p-site translations; see Figs. 6a, d, f, g) 
(Caputo, Vukosavovich & Willett, 1976), intermixing 
of the extent of relative translation (mixed-site trans- 
lations) (Figs. 6c, h) (Geiser et al., 1986) and interdigi- 
tation of adjacent stacks (Fig. 6e) (Willett & Rundle, 
1964). The modeling of these variations will not be 
addressed in this paper. However, the theory presen- 
ted will be applicable to any set of patterns involving 
a single type of p-site translation (without 90 ° rota- 
tion). In addition, the replacement of halide ions by 
ligands, as previously illustrated in Fig. 3, leads to 
additional complications in the description of the 
stacking patterns. In the notation of Geiser et al. 

(a) 

..:i':" 

(c) 

Fig. 4. Polyhedra packing for Cu3X8 oligomers. (a) 1, 1, 1, 1 pat- 
tern for one-site translations. (b) 1, 1, 1, 1 pattern for two-site 
translations. (c) Interdigitation of 1, 1, 1, 1 two-site translation 
patterns. 

(1986), this has been taken into account by the 
inclusion of a term specifying a rotation of the 
oligomer by 180 ° about the normal to the plane of 
the oligomer. In the development of the theory, we 
will not take these rotations specifically into account 
but will rather assume that they are incorporated as 
part of translation operation. 

Phenomenological model 

Oligomers can undergo translations parallel to one 
of four directions to generate repeat sequences like 
those depicted in Fig. 2. The model to be selected 
must thus have a fourfold degeneracy among its basic 

1,1,1,1  

1,4,1,4 [ ~  

1,3,1,3 [ ~  

1,1,2,2 

n=l n=2 n=3 n=4 
Fig. 5. Observed stacking patterns with one-site translations for 

Cu,,X2,,+2 oligomers. 

(a) (b) (c) 

(d) (e) 

I I 

( f )  (g) 

hl  
(h) 

Fig. 6. Representative stacking patterns involving two-site, three- 
site or mixed-site translations. See text for explanation of parts. 
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vectors. An appropriate choice would appear to be 
the S=~ X Y  model with cubic anisotropy. This 
restricts the 'spins' to point toward one of the four 
corners of a square lying in the X Y  plane. Thus, the 
four possible translations, ti, i = 1, 2, 3 or 4 in Fig. 1, 
may be associated with unit vectors, S~, pointing from 
the center of the square to these four corners:* 

tl*->S = (1, 0); 

t2~-> S = (0,  1); 

t3*--> S = ( -1 ,  0); 

t4 <---> S = (0,  - 1 ) .  

It is anticipated that the energy for the stacking can 
be written in terms of scalar products of these vectors 
and may include nearest-neighbor, next-nearest- 
neighbor, third-nearest neighbor etc. interactions. 
Although the X Y  model defines a two-dimensional 
spin space, the cubic anisotropy restricts these vector 
products to discrete countable values. This, coupled 
with the one-dimensional spatial nature of these prob- 
lems, ensures that the solutions for the energies exist. 

The energy expression to be explored is derived 
from the Hamiltonian 

i 

where 

~e, = Eo+ K(S-  s,+,) + J (S .  s,+,Y 

+ D(S,,xS,+,.y + S,,yS,+,,x) + K2(51 • 5 i + 2 )  

+ J2(S, • S,+2) 2 + K3(S, • Si+3). (1) 

The terms in ~i include quadratic (K1, K2) and 
biquadratic (J1,J2) terms for both the nearest- 
neighbor and next-nearest-neighbor interactions, a 
rhombic anisotropy term (D) for the nearest-neighbor 
interaction, as well as a quadratic (K3) term for the 
third-nearest-neighbor interactions. Inclusion of the 
K, J, D and K2 terms is sufficient to generate a phase 
diagram to explain the observed stacking patterns. 

* It should be noted that this description of the basic translations 
is equivalent to the notation previously introduced to describe the 
stacking patterns (Geiser et al., 1986). This latter notation specified 
the translations by an ordered pair (ml, m2) with rnl and m2 equal to 
the translation distance parallel and perpendicular to the Cu-Cu 
axis of the oligomers, in units of the X-X edge length. Thus, 
m2=+_½ while m,=---l, -+23- . . . .  for the one-site, two-site . . . .  
translations. The basic translation unit vectors, Si, can be obtained 
from the one-site translation pair (m,, m2), m, = - ~, m2 = -+ ~ by the 
application of the transformation matrix 

(: :)  
For a (p  + 1 )-site translation, we define the fundamenta l  translat ion 
as (mt+2p, m2), with the + signs applying to the cases m~= 
+(2p+ 1)/2, respectively. The unit vectors Si are obtained from 
the (m +2p, m2) pair in the same manner as described above. 

Table 1. Energies of  the 13 stable phases 

Phase Energy, E./N 
1, 1, 1, 1 K + J + K  2 
1,2, 1,2 D +  K 2 
1, 3, 1, 3 - K  +J  + K 2 
1,4, 1,4 - D +  K 2 

I I I 1, 1,2,2 ~ K + J + ~ D  
1,1,3,3 J - K  2 
1,1,4,4 ~ K + ~ J - ~ D  
1 , 2 , 3 , 4 )  
1, 4, 3, 2 -K2 
1,2,4,3 "If , 
1, 3, 4, 2 .~ -~K +½J+~D 

1,3,2,4 ) -~-K 1 I + J - ~ D  
1, 4, 2, 3 

The J2 and K3 terms lift degeneracies along certain 
lines in that phase diagram and may provide useful 
information concerning prediction of possible addi- 
tional new phases. 

To make tabulation and comparison of energies 
systematic, the average energy per site for a specified 
stacking pattern is defined as 

E ( t l , t 2 , . . . t m ) = m  -~ ~ (EI-Eo) ,  (2) 
I=l  

where m is the number of translations tl, t2,..., tm 
in the repeat sequence for that pattern and El is the 
energy associated with the h translation in that 
sequence. Table 1 tabulates the/7 values for a number 
of different stacking patterns. 

It is easy to see the role of each of the three 
nearest-neighbor terms (K, J and D) upon the four 
unique three-unit repeat sequences of Fig. 2. The 
simple quadratic term displaces the energiesof  the 
1, 1 and the 1,3 repeat units symmetrically by E = + K  
and - K ,  respectively, leaving the 1, 2 and 1, 4 repeat 
units degenerate at E -- 0. The biquadratic term gives 
an additive term of /~  - - J  to both the 1, 1 and 1, 3 
units. These two terms thus produce three arbitrarily 
spaced levels at energies of K + J, 0 (doubly degener- 
ate) and - K +  J. The degeneracy of the 1, 2 and 1, 4 
arrangements is lifted by the rhombic term, giving 
energies of ±D, respectively, yielding a final four- 
level energy pattern of K+ J, D, - D and - K+ J, as 
shown in Fig. 2. It can be noted that the quadratic 
and rhombic terms can be combined into a single 
term of the form 

where 

fl/= S,£Si+ 1, (3) 

It will be seen that the rhombic term gives preference 
to either a horizontal propagation of the stack (the 
1, 2 arrangement) or to vertical propagation (the 1, 4 
arrangement). This is the result of the symmetric 
nature of the rhombic term. An antisymmetric form 
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Table 2. Stacking sequence stabilized by nearest- 
neighbor (n.n.) and next-nearest neighbor (n.n.n.) 

interactions 

The symbol 1 denotes that the t++t(t~+2) translation is parallel to 
the ti translation while the symbol -1  denotes that ti+~(t~+2) is 
antiparallel to tt. The symbols h and v denote that the interaction 
favors horizontal and vertical propagation of the stacks, respec- 
tively. 

n.n.n. 
n.n. 1 h -1 v 

1 1,1,1,1 1,1,2,2 1,1,3,3 1,1,4,4 
h 1,2,1,2 1,2,2,1 1,2,3,4 1,2,4,3 

-1 1,3,1,3 1,3,2,4 1,3,3,1 1,3,4,2 
v 1,4,1,4 1,4,2,3 1,4,3,2 1,4,4,1 

would lead to a differentiation based simply on the 
sense of rotation of the translation vectors. 

The choice of specific values of the parameters in 
(1) can lead to the prediction of various ground states 
for the stacking patterns. Thus, a large negative K 
value will tend to stabilize the 1, 1, 1, 1 patterns 
(designated a linear pattern), while large positive 
values of K lead to'the 1, 3, 1, 3 ground-state (labeled 
the alternating stack) conformation. The 1, 2, 1, 2 or 
1, 4, 1, 4 sequences (labeled the zigzag patterns) will 
be favored by large negative or positive values for D. 

Table 2 gives the phases that this Hamiltonian can 
expect to stabilize, where the rows are arranged 
according to the dominant nearest-neighbor interac- 
tion and the columns give the dominant next-nearest- 
neighbor terms. Thus, the first column, which favors 
parallel translations for ti and t++2, contains the four 
so-called nearest-neighbor phases. The last three 
columns contain the 12 possible (9 unique) competi- 
tion phases where nonparallel %, t;+2 interactions 
dominate. In the first row, the obvious 1, 1, 2, 2, 
1, 1, 3, 3 and 1, 1, 4, 4 competition phases appear. 
(An equivalent phase is found once more in each 
column.) Each of these three columns also contains 
an enantiomorphic pair, which is degenerate in energy 
for this Hamiltonian. Hence, 13 unique phases 
are anticipated, with 10 separate phase regions in the 
phase diagram. 

Initial discussions of the predictions of the model 
will focus on just the K, J, D and J2 parameters, with 
the assumption that all others are zero. Table 1 gives 
the energy expression for each of the 13 phases in 
Table 2. To see the effect that these parameters have 
on the energies of various stacking sequences, it is 
instructive to examine their energy as a function of 
K2 for a specific set of values for K, J and D. This 
is shown in Fig. 7 for the case where K< 0, J =  - 0.4 K, 
and D=0.5 K. At K2=0, the 1, 1, 1, 1 sequence is 
lowest in energy while, for this choice of parameters 
( - D  < - K  - J), the 1, 2, 1, 2 level lies slightly above 
it. Since their energy expressions both contain an 
additive +K2 term, these two levels will never cross. 

. E/IKI / /  

I 

oi+ 

0 1 ~~x~O.5 1.0 

- 0 _ ~  

X 
- 1 . 0  - X , , z  

Co) N 

Fig. 7. Reduced energies, E./[K[, for various stacking patterns as 
a function of the reduced next-nearest-neighbor interaction, 
g2/lgl. (a) g < o ,  J = - 0 . 4 K ,  V = 0 . 5  K, J2=0,  K3=0;  (b) 
K <O, J =-O.4 K, D=O.5 K, Jz=O.2 K , K3=0;  (c) K < 0 ,  J =  
-0 .4  K, D = 0.5 K, -/2 = 0, K 3 = -0.2 K. 
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The 1, 3, 1, 3 pattern starts at E = 0 when K 2 = 0 but 
decreases as - K  2. Thus ,  the 1, 1, 1, 1 and 1, 3, 1, 3 
patterns cross at K2 = ½(K +J) .  However, for D ~ 0, 
other levels must be considered. In particular, for 
D < 0 ,  the 1, 1, 2, 2 sequence (horizontal sawtooth 
stacking) will have an energy ½(K + J ) +  ½D, indepen- 
dent of K2, and will be low in energy for the region 
-½(K + J -  D) _< K2 _< -½(K + J  + D). The sequence 
of ground states 

1 , 1 , 1 , 1 ~ 1 , 1 , 2 , 2 ~  1, 2, 3,4 

is found as K2 increases. Examination of Fig. 7 shows 
that there are several phases degenerate at the point 
where the 1, 1, 1, 1 and 1, 1, 2, 2 lines intersect. This 
is a general phenomenon and will be valid for all 
patterns that propagate in the horizontal direction, 
i.e. those composed only of type 1 and 2 translations. 

The above discussion has shown that the presence 
of competing interactions (D and K2) leads to the 
presence of a new phase (the 1, 1,2,2 phase), 
analogous to the ~ (~'~'$$) phase of the ANNNI model. 
As might be anticipated, additional new competition 
phases of this type are also found to be stable. These 
are illustrated in Fig. 8, and arise from competition 
of the linear phase with the horizontal and vertical 
zigzag phases, the alternating phase and the two 
helical phases, respectively. As might be anticipated, 
this leads to a quite rich phase diagram. Of these 
analogs to the ANNNI ~ phase, only the 1, 1, 2, 2 
phase has been observed experimentally (Bond, 1990; 
Bond, Willett, Rubins, Zhou, Zaspel, Hutton & 
Drumheller, 1990). 

The K, J, D, K2 ground-state phase diagram is 
quite complex and interesting. Several two- 
dimensional sections through the diagram are shown 
in Figs. 9 and 10. Stability of all the known phase 
types shown in Fig. 5 are predicted, as well as the 
new phases indicated above. The D, K2 sections (Fig. 
9) with J > 0 contain all of the observed ground-state 
phases. For K > 0 (Fig. 9a) and D near zero, the 
alternating 1,3,1,3 pattern is stable for K 2 <  
½(K - J ) ,  while the helical 1, 2, 3, 4 (or 1, 4, 3, 2) pat- 
tern is stable for larger values of K2. The anisotropy 

1,1,2,2 1,1,4,4 1,1,3,3 

1,2,4,3 1,4,2,3 1,2,3,4 
(1,3,4,2) (1,3,2,4) (1,4,3,2) 

Fig. 8. Stacking patterns for the stable competition phases, as 
predicted by (1). 

term, D, stabilizes the zigzag stacks (1, 4, 1, 4 for 
D >> 0; 1,2,1,2 for D << 0) at the expense of the alternat- 
ing stack. In addition, a gap opens up at K2 = ½(K - J) 
in which the 1, 4, 2, 3 (D > 0) and 1, 2, 4, 3 (D < 0) 
phases are stable. The phase diagram is quite similar 
for K<0  and J > 0  (Fig. 9b). Along the line D=0,  
the linear phase transforms to the helical phase at 
K2 = ~[K+J], while the anisotropy term again stabi- 
lizes the zigzag phases at large [D[ values. Again, a 
gap opens up at K2=½[K+J[, in which the vertical 
and horizontal sawtooth phases (1,1,4,4 and 
1, 1, 2, 2 patterns) are stable. The horizontal width of 
these phases is equal to Ig-JI- The corresponding 
sections for J < 0 are illustrated in Figs. 9(c) and (d). 
The significant feature here is the stability of the 
1, 1, 3, 3 phase at large values of K2. The bold lines 
in Fig. 9, denoting the boundaries between the linear 
and competition phases, are the lines of multiple 
degeneracy indicated previously. Thus, it is antici- 
pated that the inclusion of the additional terms in (1) 
will introduce additional phases in this region. 

To obtain a better picture of the phase behavior, 
the sections in the D, K plane (Fig. 10) can be 
examined. Very simple diagrams are obtained for 
K2<0 (Figs. 10a, d). For J > 0 ,  the D = 0  line is the 
boundary between the two zigzag phases (1, 4, 1, 4 
and 1,2, 1,2) for small values of Igl and wedge- 
shaped areas of stability are obtained for the linear 
(1, 1, 1, 1 sequence) and alternating (1,3, 1,3 
sequence) stacks for D<< 0 and D >> 0, respectively. 
With J < 0, the phase diagram is effectively rotated 
90 ° in the D, K plane so that the line K= 0 separates 
the linear and alternating phases at small values of 
D. As IDI increases, the wedge-shaped areas of stabil- 
ity give rise to the vertical and horizontal zigzag 
phases. 

The complexity of the phase behavior in the D, K 
plane increases considerably for positive value of K2. 
For J > 0, the boundary at D = 0 between the horizon- 
tal and vertical zigzag phases [in Fig. 10(a), for K2 < 
0] now opens up and the helical phase is found to 
be stable near the center of the diagram, as seen in 
Fig. 10(b). In addition, four of the competition phases 
(1, 1, 4, 4; 1, 1, 2, 2; 1, 4, 2, 3; 1, 2, 4, 3) exhibit regions 
of stability. Fig. 10(c) gives the phase diagram for 
J < 0, where it is now seen that all competition phases 
have areas of stability, with the 1, 1, 3, 3 phase stable 
for small values of D and K. Again, several lines 
separating phases have multiply degenerate ground 
states. 

The role of further terms in the Hamiltonian in 
removing degeneracies along the phase boundaries 
between the linear and zigzag phases can now be 
examined. In Fig. 7, the effect of the J2 and g 3 terms 
on the energies of the various phases is shown. The 
next-nearest-neighbor biquadratic term, J2(Si • Si÷2) 2, 
affects most levels equally. Only the sawtooth 1, 1, 2, 2 
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and 1, 1, 4, 4 phases are left unchanged. Thus, as seen 
in Fig. 7(b), the addition of a positive J2 term 
enhances the range of stability of these sawtooth 
phases. The degeneracy at the linear/zigzag phases 
is left unchanged. The third-nearest-neighbor 

quadratic interaction, /£3 S i  ° Si+ 3, has a 
more pronounced effect, in that the 1, 1, 1, 2, 2, 2 
state (or 1, 1, 1, 4, 4, 4 state) can now be stabilized 
relative to the other stacking-pattern combination of 
1 and 2 (or 1 and 4) translations, as seen in Fig. 7(c). 

~ 1 . 0 -  
1,4,1,4 

0.5- 

-lO .~-°'5~?~°'5 1"~ 2~K2/K 
1,3,1,3 -0.5- 1,2,3,4 

k l , 4 , 3 , 2  

-1.0 

1,2,1,2 

1.0 

1,4,1,4 

0.5 ¸ 

1,2,3,4 
1,4,3,2 

- 1.0 - 0 . 5  / 0 .5  1.0 

1,1,1,1, -0.5 

-1.0 

(a) \ (b) 

D/K / \ , D/IK[ 

1.o+ \ ' . '7":"i / 1.o 

-1.O 

1,3,1,3 

-0.5 

/ 
1,1,1,1, 1,1,3,3, KJIKI _ _  K J K  

0, 1.0 -1.0 -0.5 0 1.0 

-0 .5t  / \  -0.5 

-1.0+ / ~ \ -1.0 

/ 1,2,4,3 
1,3,4,2 

(c) 

~ l  1,1,2,2 

(a) 

Fig. 9. Sections of the T= 0 phase diagram in the D,K2 space, with J2 =/(3 = 0. (a) K>  0, J =  0.4 K>  0; (b) K<  0, J =  - 0 . 4  K>  0; (c) K >  0, 
J =  - 0 . 4  K<0;  (d) K<0 ,  J = 0 . 4  K<0.  



Discussion An infinite degeneracy still remains but it is now 
displaced to the intersection of the 1, 1, 1, 2, 2, 2 and 
1, 1, 2, 2 patterns. In the resultant phase diagram, an 
area of stability opens up along the line of intersection 
of the zigzag and vertical and horizontal sawtooth 
phases. This is illustrated in Fig. 11 for the same K, 
J, D and /(2 parameters used to generate Fig. 9(b). 
Comparison of these two diagrams shows that the 
range of stability of the linear and vertical and 
horizontal sawtooth phases are reduced concom- 
mitantly. 

D/J 

The results from the previous section provide a 
framework with which to discuss and interpret many 
of the observed stacking patterns. The model has 
predicted all of the polytypes depicted in Fig. 5. The 
microscopic interpretation of the energetics leading 
to each stacking pattern will involve several com- 
ponents including (i) oligomer-oligomer interactions 
within stacks, (ii) oligomer-oligomer interactions 
between stacks, (iii) oligomer-counterion interaction 

1,4,1,4 

1,2,1,2 

-2.0 

-2.0 

• 1.0 ~ 3  

o 1 ~ l J  
-1.0 

1,1,1,1 0 

(a) 
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D/J 

N 1,2,4,3 
_2.0 [ ~  "NN~ '4'2 

1,2,1,2 ~ 

(b) 

-I• 2.0 ] ~  

-2.0 -1.01 Ul 1.01 

1,3,1r3 

I ~ ,  K/IJI 
2.0 

1r2rlr2 

1,1,1,1 
-210 I -1.0 

1,2,1,2 

D/IJI 

1,3,1,3 
i 

0 1.0 

- 1 . 0  

K/IJI 
I 

2.0 

(c) (a) 

Fig. 10. Section of the T=0 phase diagram in the D,K space with J2=K3=0. (a) J>0, K2= -0.5 J<0; (b) J>0, K2=0.5 J>0; (e) J<0, 
/(2 = -0.50 J>0; (d) J<0, Kz=0.5 J<0. 



622 PLANAR COPPER(II) HALIDE OLIGOMERS 

and (iv) counterion-counterion interactions. For 
example, the energetics of the interactions of the 
counterions with themselves and with the oligomers 
probably dictate whether the translations involve one- 
site, two-site or higher-site displacements. This can 
be visualized from Fig. 4, where the two-site displace- 
ment stack shown in Fig. 4(b) has a much more 
structured surface than the one-site displacement 
stacks in Fig. 4(a). These factors will depend upon 
the details of the geometry and hydrogen-bonding 
capabilities of the counterions and thus cannot be 
discussed in detail in this paper. Intrastack oligomer- 
oligomer interactions are expected to be dominant in 
the system where one or two of the halide ions have 
been replaced by relatively bulky organic ligands. 

The stacking patterns exhibited in Fig. 5 by unsub- 
stituted CUnX2n+2 (n >- 2) oligomers* occur primarily 
as the linear 1, 1, 1, 1 stacks. Several systems do 
exhibit the horizontal zigzag 1, 2, 1, 2 pattern (Geiser 
et al., 1986), while one system has the alternating 
1,3,1,3 stacks (Fletcher, Livermore, Hansen & 
Willett, 1983) and one has the horizontal sawtooth 
1, 1, 2, 2 pattern (Bond et al., 1990). The energetics 
in these systems will be largely dictated by counterion 
interactions since the intrastack interactions should 
be quite similar for all patterns. Examination of the 

* The only CuCI~- polytype known occurs in 
[(CTHTN)2CuC14]'H20 (Bukowska-Strzy~ewska & Skoweranda, 
1987) as linear-type stacks, along with segregated CuCI2(H20)2 
stacks. Other systems with planar CuCI42- anions crystallize with 
the layer perovskite structure (Willett, 1966). 

K<O, J=-O.4K>O 
Kz=-O.2K>O 

D/IKI 

1,4,1,4 

-1.0 -0.5 o K[ 

. ~ t ,  t 

1,2,1,2 

Fig. 11. Section of the T = 0  phase diagram in the D, K 2 space 
with K < 0, J = -0 .4  K > 0, K 3 = -0 .2  K > 0. 

phase-diagram sections in Figs. 9 and 10 shows that 
the linear pattern is stable for K<0,  [DI small and 
K2 negative or, at most, with a small positive value. 
The 1, 2, 1, 2 and 1, 1, 2, 2 patterns also occur with 
K < 0 and K2 negative or with small positive values 
but with D<< 0. Finally, the alternating structure 
occurs with K > 0, IDI small and K2 negative. Thus, 
in general, it is concluded that K is small and nega- 
tive, D < 0 and K2 is small and usually negative. The 
negative anisotropy term is associated with the rec- 
tangular nature of the oligomer and is probably due 
to a more efficient side-to-side packing of adjacent 
stacks for the horizontal versus vertical zigzag stacks. 

The trans Cu,X2,L2 species (as in Fig. 3c) normally 
assume the linear 1, 1, 1, 1 pattern (Geiser et al., 1986), 
since the L ligands will be forced into the semi- 
coordinate site on the adjacent oligomer in the zigzag 
or alternating patterns. The mono-substituted 
CunX2n+lL species (Fig. 3b) can be incorporated into 
any of the three major stacking arrangements (linear, 
horizontal zigzag or alternating), although the linear 
stacking patterns appear to be preferred. Thus, the 
effect of these substitutions is to lead to large negative 
values of K and K2. 

The vertical zigzag 1, 4, 1, 4 patterns arise when one 
of the vertical ends of the oligomer is capped by a 
bidentate ligand (as in Fig. 3d) (Manfredini et al., 
1990; Pon, private communication). The translation 
vectors must also carry with them 180 ° rotations, as 
indicated diagramatically in Fig. 12. In this manner, 
the bulky bidentate ligands, for steric reasons, are 
separated as far as possible from each other. In gen- 
eral, the coordinating atoms of these ligands will not 
be competitive with the halide ions in forming semi- 
coordinate bonds. Thus the vertical zigzag (Figs. 
12a,b) or alternating stacks (Fig. 12c) will be pre- 
ferred to linear or horizontal zigzag structures. Hence, 
these compounds are in the positive D, positive K 
region of parameter space. 

Further theoretical work is needed in several areas. 
The present model only treats stacking patterns 
involving a single type of translation. Several 
examples of mixed-site translations are known (see 
Figs. 6c,h) (Geiser et al., 1986; Bond & Willett, 1989). 
This will involve the definition of operators of type 
S ? ,  where the superscript m denotes an m-site trans- 
lation vector t~' (k = 1, 2, 3, 4), and inclusion of inter- 

(a) (b) (c) 

Fig. 12. Stacking patterns for Cu,,X2,L' oligomers, where L' is a 
bidentate ligand. 
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action terms in (1) between operators with different 
m values. This is a rather trivial extension of the 
theory but is probably only worthwhile pursuing if 
more mixed-site translational stacking patterns are 
encountered. A nontrivial task involves the inclusion 
of three-dimensional interactions and the search for 
'devil's staircase' and/or incommensurate phases for 
T > 0 .  We can anticipate their presence since this 
system can be reduced to an Ising-like system for 
appropriate choices of K, J, D and K 2 parameters. 
A useful extension of the theory is to the interdigitated 
stack system as illustrated in Fig. 3(c). 

The theoretical results suggest a number of further 
experimental studies. Stability of several new phases 
is predicted, including the helical 1, 2, 3, 4 phase and 
additional new competition phases. As indicated 
above, further examples of mixed-site translational 
stacks, as well as interdigitated stacks, are desirable 
to complement theoretical developments. 

The establishment of the existence of disordered, 
incommensurate or 'devil's staircase' phases is 
also important. A particularly interesting pair of 
oligomeric systems occur for (4-picolinium)2Cu3C18 
and (4-picolinium)2CuaBr8 (Bond, 1990; Bond et al., 
1990). The only chemical difference is the replace- 
ment of the chloride ions by bromide ions, yet this 
triggers a change from the zigzag 1, 2, 1, 2 pattern to 
the sawtooth 1, 1, 2, 2 pattern. This raises a number 
of interesting experimental questions It is possible 
that different growth conditions could lead to a 
change in the polytype or that the compounds may 
undergo phase transitions to a different polytyl:;e. 
Since the zigzag ~ sawtooth transition occurs near 
the neighborhood of the lines of degeneracy in the 
plane diagram, a study of the mixed halide (4- 
picolinium)ECUaC18_zBrx system may lead to the dis- 
covery of new phases, such as the 1, 1, 1, 2, 2, 2 phase 
(Fig. 11) or a 'devil's staircase'-type phase. 

A second oligomeric system of interest for further 
study is (4-methyl-2-aminopyridinium)2CuaC18. The 
structure is reported to contain zigzag l, 2, l, 2-type 
stacks but with a disorder incorporating 1, 1, 2, 2-type 
sequences (Grigereit et al., 1987). This system needs 
to be re-examined to see if it really is disordered and 
if there may exist ordered phases under other condi- 
tions. 

The support of NSF Grant DMR-8803382 is grate- 
fully acknowledged, as are discussions with Professor 
James Walker. 
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